
Optimizing Memory Access on GPUs using Morton Order

Indexing

Anthony E. Nocentino
Department of Computer and Information Science,

University of Mississippi

662-915-7310

aen@cs.olemiss.edu

Philip J. Rhodes
Department of Computer and Information Science,

University of Mississippi

662-915-7082

rhodes@cs.olemiss.edu

ABSTRACT
High performance computing environments are not freely
available to every scientist or programmer. However, massively
parallel computational devices are available in nearly every
workstation class computer and laptop sold today. The
programmable GPU gives immense computational power to a user
in a standard office environment; however, programming a GPU
to function efficiently is not a trivial task. An issue of primary
concern is memory latency, if not managed properly it can cost the
GPU in performance resulting in increased runtimes waiting for
data. In this paper we describe an optimization of memory access
methods on GPUs using Morton order indexing, sometimes
referred to as Z-order index.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming —
Parallel Programming

General Terms
Performance, Algorithms.

Keywords
Memory access, memory latency, GPGPU, Morton order, space
filling curves.

1. INTRODUCTION
In today’s high performance computing environments, general
purpose computing on graphics processor units (GPGPU) is
becoming increasingly popular[6]. Benefits include massively
parallel computation in small, inexpensive and easily managed
systems with devices most workstation class computers already
have. GPGPU systems provide a highly parallel computation
environment with high memory bandwidth, but it is important to
minimize memory latency to maximize performance [1].

In this paper we present a method that overcomes memory latency
when copying data to and from GPU global memory. We take
advantage of the GPU’s vast computational power to compute
Morton[3] indexes that relax the requirements of memory
coalescing. Due to their computational complexity, Morton order

and other space-filling curve techniques are usually applied in
secondary storage systems where the discrepancy in access times
is much greater than that of CPU to main memory. Realizing the
computational power of the GPU, we apply it to memory access.

Our eventual goal is to support applications on the GPU which
exploit spatial coherence to reduce the total amount of processing
required. For this reason, we prefer to divide the dataset domain
into square blocks, since they have better locality than other
choices. Unfortunately, they may also suffer from higher latency
costs because of the way that memory is accessed. Morton order
indexing allows us to address the latency problem while retaining
the spatial advantages of square blocks.

We begin with some background information on programming for
the GPU, including the CUDA programming model and the GPU
memory hierarchy. We will also discuss coalesced memory access
and its importance to high performance computing in a GPU
program. Next, we describe the motivation and contributions for
this project. After a discussion of our implementation,
experiments and results we present our conclusions and future
work.

2. GPU PROGRAMMING
In this section we discuss concepts of GPU programming, the
hardware, the CUDA programming model, grouping threads into
a block, and coalesced memory access.

2.1 GPU Memory Hierarchy
The GPU has several different types of memory available, each
with different characteristics and management needs. Global,
local and texture memory are the most plentiful but have the
highest memory latency and that register, shared and constant
memory are scarce but have the lowest memory latency. This
contrast between slow and plentiful and fast and small is a critical
factor in the success of a GPU program. Global memory is an
uncached memory with size on the order of hundreds of
megabytes. Shared memory is much smaller, on the order of
kilobytes. It is shared between threads in a block, but it is not
visible between blocks. For this reason transactions between
shared and global memory occur frequently and therefore are a
major factor for performance. Because of the significant
performance discrepancy between global and shared memory,
programmers must take great care to access memory in a manner
that minimizes the effect of access latency, further discussed in
section 2.4.

Shared memory is a parallel data cache that is shared by all scalar
processor cores and is where the streaming multiprocessors’ (SM)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACMSE’10, April 15-17, 2010, Oxford, MS, USA.
Copyright © 2010 ACM 978-1-4503-0064-3/10/04... $10.00.

mailto:rhodes@cs.olemiss.edu
mailto:Aen@cs.olemiss.edu
mailto:Aen@cs.olemiss.edu
mailto:rhodes@cs.olemiss.edu

shared memory space resides, it is often used as a data cache
among threads on the same SM[1].

2.2 Typical GPU Program
The programming paradigm familiar to general purpose computer
programmers shifts dramatically when programming for the GPU.
GPU programs are massively parallel and one must carefully
consider the computation and data management during program
design. CUDA is an extension to C provided by NVidia for their
graphics processors [1, 2]. CUDA programs have their beginning
in the host; this is where memory is allocated and populated with
program data. Program data must traverse the memory hierarchy
to get from the main memory of the computer into memory that is
accessible by the GPU’s multiprocessors.

This difference changes the way data is managed so a GPU
program usually follows this path:

1. Host process sends data into GPU global or texture memory
2. Partition the device’s global memory data and transfer

partitions into shared memory
3. Perform computation on the data in shared memory
4. Write the result from shared memory out to global memory
5. Host process reads results back to host memory

This paper relates to steps two and four. Focusing on the memory
transactions between global and shared memory.

2.3 CUDA Programming Model
During processing, data is partitioned into a grid, a grid is
partitioned into blocks, and blocks are sets of threads. The
execution configuration consists of the grid dimension, the block
dimension and shared memory allocation per thread. Blocks and
threads can be uniquely identified by a numerical index; we refer
to them as blockID and threadID. The memory access pattern is
dictated by the execution configuration, which is discussed further
in section 4.

A warp is a group of 32 threads that are scheduled in the GPU; a
half warp is 16 threads. Accesses to global memory are scheduled
in units of half warps. It is great of interest to us how a half warp
accesses data. It is at this critical junction when data transfer takes
place[1]. We will discuss this further in section 4.

2.4 Coalesced Memory Access
Memory access is coalesced when reads or writes for a half warp
can be combined into a single global memory transaction;
otherwise several separate memory transactions are performed.
Because of the high latency of global memory access, coalesced
memory access is the single most important performance

Figure 1: With a linear access pattern (left) each row much be
processed. Using a square access (right) pattern we can reduce
amount of area needing computation

consideration when programming for a GPU. Programs must meet
the follow requirements for coalesced access [2]:

1. On devices with compute capability 1.1
• The kth thread in a half warp must access the kth word in a

segment aligned to 16 times the size of the elements
accessed

• Threads per block should be a multiple of 16, the half warp
size

2. On devices with compute capability 1.2 or higher
• Any access pattern that fits into a segment of size 32 bytes

for 8-bit words or 64 bytes for 16-bit words or 128 bytes
for 32-bit or 64-bit words

For compute capability 1.1, if a memory transaction is issued and
these requirements are not met, 16 memory transactions are
issued. For compute capability 1.2 and higher, the kth thread can
access any element. However, 1.2 and higher devices will issue
memory transactions comprised of a number segments of fixed
size. If only a portion of a segment contains requested data, than
bandwidth is wasted resulting in a lower load factor.

Caching has long been used to improve performance for serial
systems. While current GPUs support a texture cache, a 2D read-
only cache of global memory, our technique addresses both read
and write access for n-dimensional data. Relevant literature [19]
indicates that next generation GPUs will have a coherent and
unified L2 cache shared amongst the SMs, but these systems will
not have a spatial view of the data. Our technique should prove
effective as it diminishes the impact of cache misses and initial
data loads from global memory into shared memory.

3. MOTIVATION AND CONTRIBUTION
Our current work is part of a larger effort to optimize spatial
calculation on the GPU. Certain calculations can be optimized by
early termination if appropriate conditions are met. We are
interested in addressing the case where such conditions are
spatially coherent. For example, a flood simulation application
could be accelerated by early termination of computation in
entirely dry areas of the terrain. The shaded irregular region in
figure 1 shows the extent of a flood at a point in time. Our goal is
to choose a block shape that maximizes the probability of all
terrain elements in a block being dry. Due to the SIMD nature of
GPU programming, if a block has even one wet element, all
threads in the block must wait for that element to finish
processing. For this reason, the thin horizontal blocks in figure 1a
will perform poorly compared to the square blocks of similar area
in figure 1b.

Although square blocks will take better advantage of spatial
coherence, they will usually incur higher latency costs when used
with linear order data. Considering the GPU programming
paradigm—assigning threads to each data element and performing
computation simultaneously—the motivation for minimizing
latency costs is obvious. We do not want to waste processing time
waiting for memory access to complete. Chunking is a well
understood technique for addressing latency that would group the
data needed by a block contiguously in memory, providing good
performance [18]. Unfortunately, this technique would tightly
couple the execution configuration with the data organization,
requiring reorganization of the entire dataset if we change the
block size. We instead chose to apply Morton order indexing [3].
Using this technique we are able to reduce the impact of memory
latency by exploiting the vast computational power of the GPU to
perform the Morton index calculations. Morton order indexing
transforms our n-dimensional dataset into a one-dimensional

representation. With a one dimensional linear representation of the
data whenever our block size is greater than or equal to a half-
warp (16) we will increase the number of coalesced memory
transactions and for some cases be able to provide all coalesced
memory transactions, thereby reducing the total number of
memory transactions required for a program.

3.1 Morton Order
Morton order indexing is used to index an n-dimensional array in
a manner that converts the Cartesian coordinates into a single
index value by bit interleaving or dilation [3, 4]. Data in the array
is accessed in the distinctive Z pattern. See Figure 2a.

4. IMPLEMENTATION
In this section we will discuss our implementation details for the
Morton and linear indexing schemes. The details of our
experiments will be discussed in the next section.

A Morton index is calculated for the X and Y coordinate of a
blockID. Through testing we selected a dilation algorithm and
implemented it as a function inside our CUDA kernel. The
implementation of the Morton calculation algorithm we chose is
described thoroughly by Raman and Wise[4]. As each thread
processes its element, it must also calculate the Morton index for
that element’s block. Elements within a block are loaded using
coalesced reads, and are then processed independently by each
thread. We would like to emphasize that because our current tests
do not perform a calculation that requires information from
neighboring elements, we never have to compute the Morton
index for individual elements.

Our method translates the two dimensional block into a one
dimensional representation of the dataset. Additionally, memory
access order is determined first by its location in the grid, by
blockID and then by block dimension; independent of block
dimension on the Y axis. This is in contrast to a linear access
pattern in which memory access order is determined by blockID
and block dimension in both the X and Y directions resulting in
memory access patterns which are determined by the execution
configuration. Accessing the one dimensional representation of
the dataset using this Morton indexing for blocks we can achieve
increased number of coalesced memory transactions (in some
configurations all coalesced memory transactions) and a reduced
number of total memory transactions. As shown in figure 2a, we
have an 8x8 grid of 4 blocks; the block’s data is accessed in

parallel and the grid is traversed in Morton order. In this case
access is coalesced since the read transaction is the same as the
warp size. In contrast, in figure 2b, we have the same execution
configuration but memory access will not be optimal. On a 1.1
device this is because the kth thread is not accessing the kth
element this results in uncoalesced transactions. On a 1.2 or
greater device this will results in transactions with lower load
factor effectively reducing bandwidth.

5. EXPERIMENTS AND RESULTS
In this section we present our experimental design and results. We
devised an experiment to test the number of memory transactions
executed by the GPU using a test application. Additionally, we ran
our experiments on devices with compute capability 1.1 and 1.3 to
capture the effects of the different coalescing models.

We implemented a compositing (alpha blending) volume
rendering technique[5]. This technique was chosen since it does
not require neighbor information and is data parallel. We will
address our concerns with neighbor calculation in the future work
section.

Using a set of CT data, approximately 14MB in size consisting of
256x256 pixels and 113 slices, we developed a parallel algorithms
to process this data[17]. The algorithm follows a ray through the
data set performing the compositing function on each voxel along
the ray generating a single image[5]. Our implementation loads
the whole dataset into global memory and performs the processing
on each slice from back to front using a loop.

Figure 3: Total memory transactions for compositing on GPU
with compute capability 1.1

0

1,250,000

2,500,000

3,750,000

5,000,000

2x2 4x4 8x8 16x16

Block Size

Figure 4: Total memory transactions for compositing on GPU
with compute capability 1.3

0

125,000

250,000

375,000

500,000

2x2 4x4 8x8 16x16

Block Size

Figure 2a (left): Each large square is a block and its data, which
is stored contiguously in memory, producing coalesced reads.
Grid traversal is in Morton order. Figure 2b (right): Each shaded
region is a block, containing a collection of numbered cells. The
numbers in each cell indicate that block elements are not
contiguous in the linear ordering, resulting in suboptimal
performance.

The results presented in figures 3 and 4 are for square execution
configurations. In each test case, we are using two dimensional
Morton indexing for each plane in the dataset.

On devices with compute capability 1.1 and 1.3 using Morton
indexing significantly reduces the number of memory transactions
when compared to linear indexing. This is true for all cases but the
16x16 case. With the 16x16 case all memory transactions are
coalesced because the row width is 16 and meets the requirements
for coalesced memory access for both device types. This is true
using either indexing method. Note that on devices with compute
capability 1.3 the total number of transactions is reduced by a
factor of 10. This is because it has looser coalescing requirements
and the ability to combine smaller memory transactions into larger
ones.

These results indicate that the Morton indexing method will prove
effective for data access on the GPU.

6. RELATED WORKS
As the separation in speed in memory hierarchies increases due to
faster clock speeds and multi-core CPU systems, Morton order
indexing has emerged as an optimization to address the memory
locality and latency issues which are compounded in today’s
multi-core systems[10]. This is extended into GPUs with their
large number of streaming multiprocessors (SM) as programmers
try to keep each SM sufficiently occupied a computation[1, 2, 10].
It is known that GPUs possess signification power[6, 7, 16]
However, they were not initially designed for general purpose
computation. Their memory hierarchies were built to maximize
throughput rather than minimize memory access latency for
threads[13].

Additionally, it is known that to achieve optimal performance on
GPUs a major concern is managing global memory latency [1, 2 ,
8]. Morton order indexing has been applied as a latency reduction
technique [12]. We extend the latter into a more general case and
envision our technique as part of an API for efficient memory
access in GPUs. Other strategies have been suggested for latency
reduction but we hope that our methods can apply to more general
cases and reduce the burden on the programmer[8, 14, 15].

7. FUTURE WORK
As we work toward spatial applications like the flood simulation
example discussed briefly in section 3, there are two important
areas that we must investigate.

First, it became evident during our exploration for application
scenarios that we needed an undilation function, the ability to
transform a Morton index back into an X, Y pair. This will allow
for easier access to neighbors around a data element, greatly
increasing the range of applications we can support.

Second, we must extend our current implementation beyond
square grids and square blocks. We will explore varying grid and
block dimensions to measure the impact on performance.
Preliminary experimentation comparing Morton indexing with
linear indexing using non-square execution configurations shows
there is an increase in the number of coalesced memory
transactions thereby reducing the number of memory transactions.

8. CONCLUSION
We have presented a method that allows us to choose a square
block shape while avoiding the substantial performance penalties
normally associated with square blocks. As demonstrated in the
results, we have verified that Morton order reduces the number of
required memory transactions compared with linear order for a

program using square blocks. As our work progresses, Morton
order will allow us to exploit the desirable spatial properties of
square blocks without incurring the latency penalties that are
otherwise expected.

9.REFERENCES
[1] NVIDIA CUDA, Programming Guide. Version 2.3.1 2009.

[2] NVIDIA CUDA C Programming Best Practices Guide,
CUDA Toolkit 2.3, July 2009.

[3] G. M. Morton, “A computer Oriented Geodetic Data Base;
and a New Technique in File Sequencing”, Technical Report.
1966.

[4] Rajeev Raman, David Stephen Wise, "Converting to and
from Dilated Integers". IEEE Transactions on Computers,
pp. 567-573, April, 2007

[5] W. Shroeder, K. Martin and Bill Lorensen, “The
Visualization Toolkit” 4th Edition. 2006. pp. 214-220.

[6] http://www.nvidia.com/object/cuda_home.html

[7] Owens et al. “A survey of general-purpose computation on
graphics hardware”. Computer Graphics Forum (2007) vol.
26 (1) pp. 80-113

[8] Ryoo et al. “Optimization principles and application
performance evaluation of a multithreaded GPU using
CUDA”. PPoPP '08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming (2008)

[9] http://www-graphics.stanford.edu/~seander/
bithacks.html#InterleaveTableObvious

[10] Adams and Wise. “Fast additions on masked integers.”
SIGPLAN Notices (2006) vol. 41 (5)

[11] Lorton and Wise. “Analyzing block locality in Morton-order
and Morton-hybrid matrices”. SIGARCH Computer
Architecture News (2007) vol. 35 (4)

[12] Aila and Laine. “Understanding the efficiency of ray
traversal on GPUs”. HPG '09: Proceedings of the Conference
on High Performance Graphics 2009 (2009)

[13] Tarjan et al. “Increasing memory miss tolerance for SIMD
cores.” SC '09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis
(2009)

[14] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., and
Skadron, K. 2008. “A performance study of general-purpose
applications on graphics processors using CUDA”. J.
Parallel Distrib. Comput. 68, 10 (Oct. 2008), 1370-1380.

[15] Nickolls, J., Buck, I., Garland, M., and Skadron, K. 2008.
“Scalable Parallel Programming with CUDA”. Queue 6, 2
(Mar. 2008), 40-53

[16] Garland, M., Le Grand, S., Nickolls, J., Anderson, J.,
Hardwick, J., Morton, S., Phillips, E., Zhang, Y., and Volkov,
V. 2008. “Parallel Computing Experiences with CUDA.”
IEEE Micro 28, 4 (Jul. 2008), 13-27.

[17] http://www.graphics.stanford.edu/data/voldata

[18] Sarawagi, S. and Stonebraker, M. 1994. “Efficient
Organization of Large Multidimensional Arrays”, In
Proceedings of the Tenth international Conference on Data
Engineering (February 14 - 18, 1994). IEEE Computer
Society, Washington, DC, 328-336.

[19] NVIDIA CUDA, Programming Guide. Version 3.0 2010.

http://www.graphics.stanford.edu/data/voldata/
http://www.nvidia.com/object/cuda_home.html#
http://www.nvidia.com/object/cuda_home.html#
http://www-graphics.stanford.edu/~seander/bithacks.html#
http://www-graphics.stanford.edu/~seander/bithacks.html#
http://www-graphics.stanford.edu/~seander/bithacks.html#
http://www-graphics.stanford.edu/~seander/bithacks.html#
http://www-graphics.stanford.edu/~seander/bithacks.html#
http://www-graphics.stanford.edu/~seander/bithacks.html#
http://www.graphics.stanford.edu/data/voldata/

