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ABSTRACT
High performance computing environments are not freely 
available to every  scientist or programmer. However, massively 
parallel computational devices are available in nearly every 
workstation class computer and laptop sold today. The 
programmable GPU gives  immense computational power to a user 
in  a standard office environment; however, programming a GPU 
to  function efficiently is not a trivial task. An issue of primary 
concern is memory latency, if not managed properly  it can cost the 
GPU in performance resulting in  increased runtimes waiting for 
data. In this paper we describe an optimization of memory access 
methods on GPUs using Morton order indexing, sometimes 
referred to as Z-order index. 

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming — 
Parallel Programming

General Terms
Performance, Algorithms.

Keywords
Memory access, memory latency, GPGPU, Morton order, space 
filling curves. 

1. INTRODUCTION
In today’s high performance computing environments, general 
purpose computing on graphics processor units  (GPGPU) is 
becoming increasingly  popular[6]. Benefits include massively 
parallel computation in small, inexpensive and easily managed 
systems with devices most workstation  class computers already 
have. GPGPU systems provide a highly parallel computation 
environment with high memory bandwidth, but it is important  to 
minimize memory latency to maximize performance [1].

In this paper we present a method that  overcomes memory latency 
when copying data to and from GPU global memory. We take 
advantage of the GPU’s vast computational power to compute 
Morton[3] indexes  that relax the requirements of memory 
coalescing. Due to their computational complexity, Morton  order 

and other space-filling curve techniques are usually applied in 
secondary storage systems where the discrepancy in access times 
is  much greater than that of CPU to main memory. Realizing the 
computational power of the GPU, we apply it to memory access.

Our eventual  goal is to support applications on the GPU which 
exploit spatial  coherence to reduce the total amount  of processing 
required. For this reason, we prefer to divide the dataset domain 
into  square blocks, since they have better locality than other 
choices. Unfortunately, they may also suffer from higher latency 
costs because of the way that memory is  accessed. Morton order 
indexing allows us to  address the latency problem while retaining 
the spatial advantages of square blocks.

We begin with some background information on programming for 
the GPU, including the CUDA programming model and the GPU 
memory hierarchy. We will also discuss coalesced memory access 
and its  importance to  high performance computing in a GPU 
program. Next, we describe the motivation and contributions for 
this project. After a discussion of our implementation, 
experiments and results  we present  our conclusions and future 
work.

2. GPU PROGRAMMING
In this section we discuss concepts of GPU programming, the 
hardware, the CUDA programming model, grouping threads into  
a block, and coalesced memory access. 

2.1 GPU Memory Hierarchy
The GPU has several different types of memory available, each 
with  different characteristics and management needs. Global, 
local and texture memory are the most  plentiful  but  have the 
highest memory latency and that register, shared and constant 
memory are scarce but have the lowest memory latency. This 
contrast between slow and plentiful  and fast  and small is  a critical 
factor in the success of a GPU program. Global memory is an 
uncached memory with size on the order of hundreds  of 
megabytes. Shared memory is much smaller, on the order of 
kilobytes. It is shared between threads in a block, but it is not 
visible between blocks. For this reason transactions between 
shared and global memory occur frequently and therefore are a 
major factor for performance. Because of the significant 
performance discrepancy between global and shared memory, 
programmers must take great  care to access memory in a manner 
that minimizes the effect of access latency, further discussed in 
section 2.4.

Shared memory is  a parallel  data cache that is shared by all scalar 
processor cores  and is where the streaming multiprocessors’ (SM) 
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shared memory space resides, it  is often used as  a data cache 
among threads on the same SM[1]. 

2.2 Typical GPU Program
The programming paradigm familiar to  general purpose computer 
programmers shifts dramatically when programming for the GPU.  
GPU programs are massively parallel and one must carefully 
consider the computation and data management during program 
design. CUDA is an extension to C provided  by NVidia for their 
graphics processors [1, 2]. CUDA programs have their beginning 
in  the host;  this is where memory is allocated and populated with 
program data. Program data must traverse the memory hierarchy 
to  get from the main memory of the computer into memory that is 
accessible by the GPU’s multiprocessors.

This difference changes the way data is managed so a GPU 
program usually follows this path:

1. Host process sends data into GPU global or texture memory
2. Partition the device’s global memory data and transfer 

partitions into shared memory
3. Perform computation on the data in shared memory
4. Write the result from shared memory out to global memory
5. Host process reads results back to host memory

This paper relates to steps two and  four. Focusing on the memory 
transactions between global and shared memory.

2.3 CUDA Programming Model
During processing, data is partitioned into a grid, a grid is 
partitioned into blocks, and blocks are sets of threads. The 
execution configuration consists  of the grid dimension, the block 
dimension and shared memory allocation per thread. Blocks and 
threads can be uniquely identified by a numerical index; we refer 
to  them as  blockID and threadID. The memory access pattern is 
dictated by the execution configuration, which  is discussed further 
in section 4. 

A warp  is  a group of 32 threads that are scheduled in the GPU; a 
half  warp  is 16 threads. Accesses to global memory are scheduled 
in  units of half warps. It is great  of interest to us how a half warp 
accesses data. It  is at this critical  junction  when data transfer takes 
place[1]. We will discuss this further in section 4. 

2.4 Coalesced Memory Access
Memory access is coalesced when reads or writes for a half warp 
can be combined into a single global memory transaction; 
otherwise several separate memory transactions are performed. 
Because of the high latency of global  memory access, coalesced 
memory access is the single most important  performance 

Figure 1: With a linear access pattern (left) each row much be 
processed. Using a square access (right) pattern we can reduce 
amount of area needing computation 

consideration when programming for a GPU. Programs must meet 
the follow requirements for coalesced access [2]:

1. On devices with compute capability 1.1
• The kth thread in a half warp must access the kth word in a 

segment aligned to  16 times the size of the elements 
accessed

• Threads per block should be a multiple of 16, the half warp 
size

2. On devices with compute capability 1.2 or higher
• Any access  pattern that fits  into a segment of size 32 bytes 

for 8-bit words  or 64 bytes for 16-bit words or 128 bytes 
for 32-bit or 64-bit words

For compute capability 1.1, if a memory transaction is issued and 
these requirements are not met, 16 memory transactions are 
issued. For compute capability 1.2 and higher, the kth thread can 
access any element. However, 1.2 and higher devices will issue 
memory transactions comprised of a number segments of fixed 
size. If only a portion of a segment contains requested data, than 
bandwidth is wasted resulting in a lower load factor.

Caching has  long been used to improve performance for serial 
systems. While current GPUs support a texture cache, a 2D read-
only  cache of global memory, our technique addresses both read 
and write access for n-dimensional data. Relevant literature [19] 
indicates that  next  generation GPUs will  have a coherent and 
unified L2 cache shared amongst  the SMs, but these systems will 
not have a spatial  view of the data. Our technique should prove 
effective as it diminishes the impact of cache misses and initial 
data loads from global memory into shared memory. 

3. MOTIVATION AND CONTRIBUTION
Our current work is  part of a larger effort  to optimize spatial 
calculation on the GPU. Certain calculations  can be optimized by 
early termination if appropriate conditions are met. We are 
interested in addressing  the case where such conditions are 
spatially coherent. For example, a flood simulation application 
could be accelerated by early termination of computation in 
entirely dry areas of the terrain. The shaded irregular region in 
figure 1 shows the extent of a flood at a point in time. Our goal is 
to  choose a block shape that  maximizes the probability of all 
terrain elements in a block being dry. Due to the SIMD nature of 
GPU programming, if a block has  even one wet  element, all 
threads in the block must wait for that element  to finish 
processing. For this reason, the thin  horizontal  blocks in figure 1a 
will  perform poorly compared to the square blocks of similar area 
in figure 1b. 

Although square blocks will take better advantage of spatial 
coherence, they will usually incur higher latency  costs when used 
with  linear order data. Considering the GPU programming 
paradigm—assigning threads to each data element and performing 
computation simultaneously—the motivation  for minimizing 
latency costs is  obvious. We do not  want  to waste processing time 
waiting for memory access  to complete. Chunking  is a well 
understood technique for addressing latency that would group the 
data needed by a block contiguously in memory, providing good 
performance [18]. Unfortunately, this technique would tightly 
couple the execution configuration with the data organization, 
requiring reorganization of the entire dataset if we change the 
block size. We instead  chose to apply Morton order indexing [3]. 
Using this technique we are able to reduce the impact of memory 
latency by exploiting the vast computational power of the GPU to 
perform the Morton index calculations. Morton order indexing 
transforms our n-dimensional dataset into a one-dimensional 



representation. With  a one dimensional linear representation of the 
data whenever our block size is greater than or equal to a half-
warp (16) we will increase the number of coalesced memory 
transactions and for some cases be able to provide all coalesced 
memory transactions, thereby reducing the total number of 
memory transactions required for a program.

3.1 Morton Order
Morton  order indexing  is used to index an n-dimensional  array in 
a manner that  converts  the Cartesian coordinates into a single 
index value by bit interleaving or dilation [3, 4]. Data in the array 
is accessed in the distinctive Z pattern. See Figure 2a. 

4. IMPLEMENTATION
In this section  we will discuss our implementation details for the 
Morton and linear indexing schemes. The details of our 
experiments will be discussed in the next section.

A Morton  index is  calculated for the X and Y coordinate of a 
blockID.  Through testing we selected a dilation algorithm and 
implemented it as a function inside our CUDA kernel. The 
implementation of the Morton calculation algorithm we chose is 
described thoroughly by Raman and Wise[4]. As each thread 
processes its element, it must also calculate the Morton index for 
that element’s block. Elements within a block are loaded using 
coalesced reads, and are then processed independently by each 
thread. We would like to emphasize that because our current tests 
do  not  perform a calculation that requires information  from 
neighboring elements, we never have to compute the Morton 
index for individual elements.

Our method translates  the two dimensional block into a one 
dimensional representation of the dataset. Additionally, memory 
access order is determined first  by its  location in the grid, by 
blockID and then by block dimension;  independent of block 
dimension on the Y axis. This  is  in  contrast to a linear access 
pattern in which memory access order is determined by blockID 
and block dimension in both the X and Y directions  resulting in 
memory access patterns  which are determined by the execution 
configuration. Accessing the one dimensional representation of 
the dataset using this  Morton indexing for blocks  we can achieve 
increased number of coalesced memory transactions (in some 
configurations all  coalesced memory transactions) and a reduced 
number of total memory transactions. As shown in  figure 2a, we 
have an 8x8 grid of 4 blocks; the block’s data is accessed in 

parallel and the grid is traversed in Morton order. In this case 
access is coalesced since the read transaction  is the same as the 
warp size. In contrast, in figure 2b, we have the same execution 
configuration but memory access  will not  be optimal. On a 1.1 
device this is because the kth thread is not accessing the kth 
element this results  in  uncoalesced transactions. On a 1.2 or 
greater device this will results in transactions  with lower load 
factor effectively reducing bandwidth.

5. EXPERIMENTS AND RESULTS
In this section we present our experimental design and results. We 
devised an experiment  to test  the number of memory transactions  
executed by the GPU using a test application. Additionally, we ran 
our experiments on devices with compute capability 1.1 and 1.3 to 
capture the effects of the different coalescing models.

We implemented a compositing  (alpha blending) volume 
rendering technique[5]. This  technique was chosen since it  does 
not require neighbor information and is data parallel. We will 
address our concerns with neighbor calculation in the future work 
section.

Using a set of CT data, approximately 14MB in size consisting of 
256x256 pixels and 113 slices, we developed a parallel algorithms 
to  process  this  data[17]. The algorithm follows a ray  through the 
data set performing the compositing function on each voxel along 
the ray generating a single image[5]. Our implementation loads 
the whole dataset into global memory and performs the processing 
on each slice from back to front using a loop. 

Figure 3: Total memory transactions for compositing on GPU 
with compute capability 1.1
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Figure 4: Total memory transactions for compositing on GPU 
with compute capability 1.3
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Figure 2a (left): Each large square is a block and its data, which 
is stored contiguously in memory, producing coalesced reads. 
Grid traversal is in Morton order. Figure 2b (right): Each shaded 
region is a block, containing a collection of numbered cells. The 
numbers in each cell indicate that block elements are not 
contiguous in the linear ordering, resulting in suboptimal 
performance.



The results presented in figures 3  and 4 are for square execution 
configurations. In each test case, we are using two dimensional 
Morton indexing for each plane in the dataset.

On devices with compute capability 1.1 and 1.3 using Morton 
indexing significantly reduces the number of memory transactions 
when compared to linear indexing. This is true for all cases  but the 
16x16 case. With the 16x16 case all memory transactions are 
coalesced because the row width is  16 and meets the requirements 
for coalesced memory access for both device types. This is true  
using either indexing method. Note that on devices with compute 
capability 1.3 the total  number of transactions is reduced by  a 
factor of 10. This is  because it has looser coalescing requirements 
and the ability to combine smaller memory transactions into larger 
ones.

These results indicate that the Morton indexing method will  prove 
effective for data access on the GPU.

6. RELATED WORKS
As the separation in speed in memory hierarchies increases  due to 
faster clock speeds and multi-core CPU systems, Morton order 
indexing has emerged as an optimization to address the memory 
locality and  latency  issues which are compounded in  today’s 
multi-core systems[10].  This is extended into  GPUs with their 
large number of streaming multiprocessors (SM) as programmers 
try to keep each SM sufficiently  occupied a computation[1, 2, 10]. 
It is known that GPUs possess signification power[6, 7, 16] 
However, they were not initially designed for general purpose 
computation. Their memory hierarchies were built to maximize 
throughput rather than minimize memory access latency for 
threads[13]. 

Additionally, it  is known that to achieve optimal performance on 
GPUs a major concern is managing global memory latency [1, 2 ,
8]. Morton order indexing  has been applied as a latency reduction 
technique [12]. We extend the latter into a more general case and 
envision our technique as part of an API for efficient  memory 
access in GPUs. Other strategies have been suggested for latency 
reduction but we hope that our methods can apply to more general 
cases and reduce the burden on the programmer[8, 14, 15].

7. FUTURE WORK
As we work toward spatial applications like the flood simulation 
example discussed briefly in section 3, there are two important 
areas that we must investigate. 

First, it  became evident  during our exploration for application 
scenarios that we needed an undilation function, the ability to 
transform a Morton index back into an X, Y pair. This will  allow 
for easier access  to neighbors around a data element, greatly 
increasing the range of applications we can support. 

Second, we must extend our current  implementation  beyond  
square grids and square blocks. We will explore varying grid and 
block dimensions to measure the impact  on performance. 
Preliminary experimentation comparing Morton indexing with 
linear indexing using non-square execution configurations shows 
there is an increase in the number of coalesced memory 
transactions thereby reducing the number of memory transactions. 

8. CONCLUSION
We have presented a method that allows us to choose a square 
block shape while avoiding the substantial performance penalties 
normally associated with square blocks. As demonstrated in the 
results, we have verified that  Morton order reduces the number of 
required memory transactions compared with linear order for a 

program using square blocks. As our work progresses, Morton 
order will allow us to exploit the desirable spatial properties of 
square blocks without incurring the latency penalties that are 
otherwise expected. 
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