
Toward Dependency-Aware Live Virtual Machine Migration

Anthony Nocentino and Paul M. Ruth
Dept. of Computer and Information Science, University of Mississippi

University, MS, USA
aen@cs.olemiss.edu, ruth@cs.olemiss.edu

ABSTRACT
The most powerful characteristic of any machine virtualiza-
tion technology is its ability to adapt to both its underlying
infrastructure and the applications it supports. Possibly the
most dynamic feature of machine virtualization is the ability
to migrate live virtual machines between physical hosts in
order to optimize performance or avoid catastrophic events.
Unfortunately, the need for live migration increases during
times when resources are most scarce. For example, load-
balancing is only necessary when load is significantly unbal-
anced and impending downtime often causes many virtual
machines to seek new hosts simultaneously. It is impera-
tive that live migration mechanisms be as fast and efficient
as possible in order for virtualization to provide dynamic
load balancing, zero-downtime scheduled maintenance, and
automatic failover during unscheduled downtime.

This paper proposes a novel dependency-aware approach
to live virtual machine migration and presents the results
of the initial investigation into its ability to reduce migra-
tion latency and overhead. The approach uses a tainting
mechanism originally developed as an intrusion detection
mechanism. Dependency information is used to distinguish
processes that create direct or indirect external dependen-
cies during live migration. It is shown that the live migration
process can be significantly streamlined by selectively apply-
ing a more efficient protocol when migrating processes that
do not create external dependencies during migration.

Categories and Subject Descriptors
C.4 [Computer-Communications Networks]: Miscella-
neous

General Terms
Performance

Keywords
Virtualization, Virtual Network, Machine Migration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VTDC’09, June 15, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-580-2/09/06 ...$5.00.

1. INTRODUCTION
Virtual machines are becoming increasingly prolific in mod-

ern computer systems. We have seen virtual machines de-
ployed in modern data centers, as computational clusters,
and even on individual desktop computers. The primary
reason driving the popularity of virtual machines is their
ability to dynamically adapt to the changing needs of ad-
ministrators, applications, and users [10, 11].

Possibly the most powerful feature of machine virtualiza-
tion is its ability to migrate virtual machines from one host
to another. Live migration [3] enhances this power by al-
lowing virtual machines to migrate without being paused
or losing network connectivity. This ability is fundamental
to machine virtualization’s claims of dynamic load balanc-
ing, zero-downtime scheduled maintenance, and automatic
failover during unscheduled downtime.

Many popular virtualization platforms, including Xen [1]
and VMware [12], provide live migration facilities. Live mi-
gration works well on these platforms and is used for many
research and industrial purposes. On one hand, virtual ma-
chine migration is heavy-weight and inefficient. Light-weight
process virtualization [8], on the other hand, provides a more
efficient mechanism for migration but is limited in function-
ality.

The ideal migration facility would have the following char-
acteristics:

1. Interaction would be through a traditional execution
environment that supports legacy applications.

2. Migration latency (i.e., the time elapsed from the ini-
tiation of migration to the arrival at the destination)
would be minimized.

3. Resource overhead (primarily caused by network traf-
fic) of the migration process would be minimized.

This paper presents an initial investigation toward depen-
dency aware live virtual machine migration. This technique
incorporates some of the performance benefits of process mi-
gration into fully realized virtual machines. The primary
contributions of this paper are: 1) The novel use of process
tainting [6] to identify external dependencies created by pro-
cesses; 2) the collection and use of dependency information
within Xen’s live migration facility; and 3) results measur-
ing reduction in network traffic that can make dependency-
aware live virtual machine migration viable.

Dependency-aware live virtual machine migration can re-
duce the overhead of live migration to that of non-live mi-
gration. Further, the largest benefit of dependency-aware

59

virtual machine migration can be seen while migrating pro-
cesses that demonstrate characteristics that are the most
problematic for existing live migration mechanisms. For
example, the MMuncher program used to demonstrate the
worst case scenario in Xen’s migration evaluation [3] is our
best case scenario.

Dependency-aware virtual machine migration does not aim
to provide better performance than process migration, but
instead works from the assumption that users want a fully
featured execution environment with fully transparent mi-
gration capabilities. This assumes that users are willing to
accept some performance overhead. The assumption that
users prefer full functionality to cutting-edge performance is
evidenced by the far-reaching adoption of machine virtual-
ization despite it being heavy-weight.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses current live virtual machine migration mech-
anisms. Section 3 presents our dependency-aware migration
mechanism and discusses its benefits. Section 4 discusses
current implementation efforts while Section 5 shares and
analyzes performance results gathered using the implemen-
tation. Finally, Sections 6, 7, and 8 discuss related and
future work and conclude the paper.

2. LIVE VIRTUAL MACHINE MIGRATION
Many traditional virtualization platforms, including VMware

and Xen, can migrate virtual machines from one host to an-
other. Fundamentally, virtual machine migration is achieved
by transferring the virtual machine’s state from a source host

to a destination host. The simplest techniques pause the
virtual machine by first saving its state to a file, then trans-
ferring the file from the source host to the destination, and
finally resuming the virtual machine from the saved state.
These non-live migration techniques require the virtual ma-
chine to be paused for the duration of the migration. Ser-
vices provided by the virtual machine will not be accessible
during the migration, and open network connections may
timeout and disconnect.

More advanced live migration mechanisms do not require
a noticeable pause of the virtual machine’s execution. In-
stead they iteratively transfer the virtual machine’s state to
the destination host while allowing the virtual machine to
continue its execution on the source host. The most sig-
nificant portion of a virtual machine’s state is its memory,
and the iterative copying of memory composes most of the
overhead of live migration.

Virtual machines do not use physical memory directly.
Instead they use abstracted pseudo-physical memory. Fur-
ther, a virtual machine’s pseudo-physical memory frames are
memory pages from the perspective of the host and are re-
ferred to as pseudo-physical memory pages, or simply pages,
throughout this paper.

In order for a virtual machine to be live during migration,
its pseudo-physical memory pages must remain accessible.
The iterative transfer of memory state allows for the use
of memory during migration as long as any pseudo-physical
memory that changes (i.e. is written to) is marked as dirty

and will be re-transfered during a subsequent iteration. Live
migration continues iteratively transferring state data until
the amount of state is less than a defined tolerance. During
the final iteration the virtual machine is paused, transfered,
and resumed using a technique similar to non-live migration.

However, owing to the reduced amount of state data the mi-
gration downtime can be as little as tens of milliseconds [3].
The minimal downtime of live virtual machine migration cre-
ates the illusion that the virtual machine migrated without
interruption.

The first two iterations of a typical live migration mecha-
nism are shown in Figure 1. In the example, the first itera-
tion must transfer all pages of the virtual machine’s memory.
However, only half of the memory has changed and is marked
dirty during the first iteration. This allows fewer pages to
be transfered during the second iteration.

Iterative virtual machine migration techniques are extremely
effective. However, they are often criticized as being heavy-
weight when compared to process migration. This critique
is amplified when one considers the varied reasons for mi-
gration. Many times live migration is initiated by an event
that requires the migration to finish quickly. Further, an
event that initiates a migration will often initiate several
migrations simultaneously. For example, automated failover
during a catastrophic event may cause all virtual machines
residing on a single host (or in a single rack) to migrate at the
same time. The dynamic load-balancing policy of a compu-
tational cluster may cause many virtual machines to migrate
simultaneously. Further, migration is often performed dur-
ing times when resources are scarce. In fact, high resource
demand can in itself be the cause for migration. In these
situations, high overhead of live migration could cause more
problems than it solves, leading to even more contention for
resources.

It is clear that a migration technique that allows for live
migration is preferable to one that does not. However, live
migration’s use of iterative copy increases the latency of mi-
gration and is the source of significant network overhead.
The most efficient live migration mechanisms will copy the
memory as few times as possible.

Additionally, iterative copy has specific difficulty migrat-
ing applications that repeatedly dirty many memory pages
during each iteration. These applications do not allow for
a sufficiently small amount of state to be copied during the
pause/restore phase. The more memory that is dirtied dur-
ing an iteration the more state data must be transfered.

3. DEPENDENCY-AWARE LIVE VIRTUAL
MACHINE MIGRATION

Dependency-aware migration grew from the observation
that a virtual machine that does not form dependencies
through interacting with external objects (i.e., other virtual
or physical machines, or devices such as a hard-disks and
consoles) can be migrated live without being alive during
the migration. In other words, a virtual machine that does
not interact with the outside world can achieve the illusion of
live migration while being paused, migrated, and resumed.

To understand this claim we must start with the questions:
“Why do we need the virtual machine to be live during migra-

tion?” and, “Why does iterative migration re-transfer dirty

state after each iteration?” It is desirable for virtual ma-
chines to be live during migration because external objects
may need to interact with the virtual machine during migra-
tion. We need to re-transfer dirty state because interactions
cause external objects to know that a virtual machine has
progressed to the point at which the interaction occurred.
The state that was originally transfered to the destination

60

(a) First iteration of an iterative live migration.

(b) Second iteration of an iterative live migration.

Figure 1: First two iterations of an iterative live migration.

has become inconsistent with respect to the external object
and cannot be used.

Alternatively, suppose we have a virtual machine that
does not interact with the outside world or at least will
not interact with the outside world for the duration of a
migration. For example, the machine may be executing a
CPU intensive physics simulation or a temporarily idle web
server. If that machine were to be migrated using itera-
tive live migration, the entire state of the machine would
be transfered on the first iteration. When the first iteration
finishes there will be dirty state (i.e. dirty memory pages).
However, no external object would know that the virtual
machine had progressed past the point that the state was
dirtied. In other words, there will be no external machine,
process, file, human, or other object that will depend on the
virtual machine maintaining its most updated state. Also,
observe that the state snapshot stored destination host is
a consistent, but slightly old, copy of the virtual machine.
Since there is no dependency on the current dirty state, that
state can be abandoned and the destination’s old snapshot
can be safely resumed.

The previous example is similar to non-live migration in
which a virtual machine is paused, a snapshot of its state is
transfered, and it is resumed on the destination host. How-
ever, the difference is that it maintains a running copy of
the virtual machine as a contingency against any new de-
pendencies that may be created during the migration. If
no dependencies are formed, the contingent virtual machine

is not needed and the originally transfered state can be re-
sumed.

This observation applies not only to a virtual machines
but to the individual processes within them. If we can iden-
tify processes that do not create new dependencies during
migration, we can selectively migrate dependent and inde-
pendent processes. Fundamentally, dependency-aware mi-
gration aims to identify dependencies between processes and
objects outside of the virtual machine. Processes that do not
create new dependencies during a migration can be migrated
quickly, while processes that create new dependencies must
be subject to the full overhead of the live virtual machine
migration mechanism.

3.1 Process Dependencies
Migration can be implemented at levels other than that of

the virtual machine. Within a computer, virtual or physical,
the basic abstraction representing an executing program is
the process. Each process has its own memory address space
usually composed of pages logically storing data that the
process is using. A process is itself a good candidate to be
used as a container for migration. In fact, several projects
have succeeded in enabling process migration [8]. As dis-
cussed in previous sections of this paper, process virtualiza-
tion and migration can be more efficient, but it is limited in
functionality and portability when compared with full ma-
chine virtualization.

The bulk of a process’ state is composed of the pages in its
address space. A process can be paused, transfered, and re-
sumed, like a virtual machine, assuming that the destination
operating system has the same network settings, filesystem,
processes, and kernel data structures (or if the process does

61

not utilize any of these entities). Full virtual machine mi-
gration ensures these requirements are met by migrating the
process and its operating system together.

The idea of employing contingent virtual machines can be
applied at a finer granularity than processes. During virtual
machine migration, a process’ state can be transfered to the
destination host along with the rest of the virtual machine.
Meanwhile, a contingent process continues to execute on the
virtual machine on the source host. The destination host’s
copy of the process’ state will remain consistent until the
contingent process creates a dependency with an external
object (for example, a file read or write). The dirtied state
of the process can be abandoned, and the slightly old but
still consistent state that is already on the destination can
be resumed if no dependencies are created between the con-
tingent process and an external object during the remainder
of the migration.

3.2 Process Tainting
In order to selectively migrate only memory pages belong-

ing to contingent processes that have created external depen-
dencies we must be able to identify dependencies and assign
these dependency to processes and their memory pages. The
security community has developed provenance-award intru-
sion detection mechanisms that can be adapted for this pur-
pose [6, 5]. Dependency-aware migration utilizes an intru-
sion detection technique, process tainting, which is based on
tracking information flow through a system. These systems
track taint from a potential break-in point to all processes
that may have been effected by the break-in. In dependency-
aware migration these potential break-in points are not con-
sidered malicious. Instead they are the initial source of the
external process dependencies.

Taint-based intrusion detection systems assume that ex-
ternal interactions may results in malicious external objects,
such as worms, injecting malicious code into a system. After
an external interaction occurs, the process that participated
in the interaction is considered tainted. After being tainted
a process may interact with other processes either directly,
through process creating or signaling, or indirectly through
a file, network socket, or other form of IPC [6]. When a
tainted process interacts with another process the taint is
passed to the untainted process. As processes interact with
each other, taint is diffused creating the set of all processes
that may have been effected by a malicious external inter-
action.

Processes in dependency-aware migration can be directly
or indirectly dependent on an external interaction. Further,
the diffusion of taint via process interactions is required,
although in the reverse direction. For example, if process
A and process B interact they become dependent to each
other. If at any time after their interaction, either process
A or process B interact with an external entity then both A
and B become dependent on the external event. More intu-
itively, if process A interacts with an external object, that
object clearly knows that process A has progressed to the
point of their interaction. Less obviously, process A knows
that process B has progressed to the point of their interac-
tion. Therefore, process B is now indirectly dependent on
the external event in which process A participated. More
complex process interactions exist and will be the subject of
future study.

3.3 Proposed Migration Mechanism
During its normal operation, dependency-aware migration

does not effect the virtual machines it supports. Virtual ma-
chines function exactly as they would without dependency-
aware migration. When a migration is initiated, the process
tainting mechanism within the virtual machine is enabled.
At that point, processes within a virtual machine that in-
teract with external objects create dependencies that taint

the process. Following the process taint dispersion mecha-
nism, processes that interact with each other are indirectly
marked as tainted as well.

When live migration is initiated the virtual machine mon-
itor begins copying the virtual machine’s pseudo-physical
memory pages from the source host to the destination. The
first iteration of the live migration requires transferring all
pseudo-physical memory pages, as shown in Figure 2(a). All
subsequent iterations must only transfer the memory pages
that are both dirty and belong to a process that has cre-
ated an external dependency since it was last transfered.
When processes create dependencies their pages are marked
tainted. So, each iteration of a live migration must copy
only pages that are both dirty and tainted, as shown in Fig-
ure 2(b). When a page is transfered it is reset to both clean
and untainted. This results in a reduction in the number of
pages transfered that is equal to the number of dirty pages
that are not tainted.

When migration is complete the entire virtual machine,
including all of its processes, will be executing on the des-
tination host. All processes will be guaranteed to be in a
consistent state with respect to external entities. However,
the state of some processes will have been updated since the
initial snapshot that was transfered in the first iteration,
while other processes will be resumed from the state trans-
fered during earlier iterations. These slightly old snapshots
are consistent with respect to external entities because they
are guaranteed to not have interacted, directly or indirectly,
with any external entities.

The primary benefit of dependency-aware virtual machine
migration is to the reduction of migration latency, down-
time, and the overhead of migration. Virtual machines sup-
porting CPU dependent applications will benefit the most.
It may seem that very few applications exhibit these char-
actetistics. However, dependency-aware migration does not
prohibit applications from creating external dependencies.
Instead, it only requires applications to not create external
dependencies for the relatively short duration of a single mi-
gration iteration. Many distributed computational applica-
tions oscillate between phases of computation and phases of
communication. Live migration during a computation phase
could be performed in as little as a single iteration. Grid
and cluster platforms may receive extreme benefits from
dependency-aware migration. As virtual machines are in-
creasingly deployed on grid and cluster computers [4, 7, 2],
virtual machine migration will gain in importance.

4. IMPLEMENTATION
This section describes the initial implementation of the

dependency aware virtual machine migration. The goal of
the initial implementation was not to provide fully featured
dependency-aware migration. Instead, the intended goal was
to achieve enough functionality to collect data that demon-

62

(a) First iteration of a dependency-aware live migration.

(b) Second iteration of a dependency-aware live migration.

Figure 2: First two iterations of a dependency-aware live migration.

strates the potential reduction in migration overhead a fully
featured system could provide. Section 4.1 describes the
mechanism to diffuse taint to dependent processes. Sec-
tion 4.2 describes how the implementation manages the mi-
gration process to collect and report dependency data during
a live migration.

4.1 System Call Interception and Dependency
Diffusion

Most operating systems, including Linux, provide access
to its underlying hardware, memory, disk, and other devices
through an interface composed of system calls. The migra-
tion facility needs to intercept these system calls to build
dependency data and tag processes as dependent.

The Linux Security Modules (LSM) [13] are used to inter-
cept the necessary system calls. The LSM interface mediates
access to internal kernel objects, placing hooks in the ker-
nel code ahead of the access. The intent of LSM is to be a
security framework, however its distinct ability to mediate
system calls has made it an obvious choice for prototyping
systems that may ultimately require large amounts of de-
velopment. The functionality provided by LSM allows the
system to easily position itself between the virtual machine’s
user space and hardware.

LSM is installed on the virtual machine and is used to
capture system calls which create or diffuse taint (i.e. ex-
ternal dependencies) within the virtual machine’s process
hierarchy. Using LSM allows the virtual machine to easily
monitor access to resources including sockets, files, I-nodes
and other I/O devices. Implementation of the dependency

diffusion model required the use of LSM operations that
will capture external input and output from our system, in-
cluding process creation, IPC, file access, and socket access.
When processes interact with each other, LSM captures the
interaction and creates dependencies based on the type of
interaction and the participating processes.

4.2 Migration Facility
The prototype implementation is a modification of the

open source Xen virtual machine platform. Xen uses a man-
aged migration model to migrate virtual machines between
physical hosts. A managed migration is performed by the
underlying hypervisor and tools under its control. By de-
fault, Xen live migration iteratively copies a virtual ma-
chine’s pseudo-physical memory pages from a source host
to a destination host. The hypervisor sits outside of the vir-
tual machine and does not have knowledge of the the virtual
machine’s traditional high level abstractions including pro-
cesses and files. It only knows about low level units such as
disk blocks and memory pages. This gap in knowledge has
been referred to as virtualization’s semantic gap[9].

To bridge this gap, a dependency-aware migration facil-
ity must provide knowledge of the virtual machine’s internal
operating system to the hypervisor. The initial implementa-
tion uses the Linux operating system within its virtual ma-
chines. The migration facility has knowledge of the standard
location of the Linux page descriptors. Using its knowledge
of the virtual machine’s internals, the migration facility is
able to access information stored in the memory page de-
scriptors and process control blocks [9].

When live migration is initialized, the virtual machine’s

63

Figure 3: Number of memory pages transfered during iterative migration and the potential savings of

dependency-aware migration during a CPU dependent computation.

page descriptors and process control blocks are accessed
from the external migration facility. Information regarding
dirtiness and taint (i.e. external dependencies) is used to
determine if a page should be transfered during the current
iteration.

Specific knowledge of the type of guest operating system is
required. However, there is no reason why the ideas behind
the system could not be applied to other guest operating
systems.

5. EXPERIMENTAL RESULTS
The system was evaluated using two experiments. In both

experiments a virtual machine was instantiated on one of
two hosts, an application was executed within the virtual
machine, and dependency data was collected during the mi-
gration. The migration of the virtual machine is not mod-
ified by the current implementation. However, the number
of pages transfered (i.e. the dirty pages) during each itera-
tion of the standard Xen migration process is recorded along
with the number of pages that would be transferred using
the dependency-aware migration model (i.e. the pages that
are both dirty and tainted). It is shown that there can be a
significant number of pages that are transfered by the stan-
dard mechanism that do not need to be transferred under
the dependency-aware model.

The development and test environment consists of two
Dell PowerEdge 1900 servers, each with two quad core In-
tel Xeon series 5355 2.66 GHz processors, 4GB of primary
memory and a system bus speed of 1333 MHz. Both servers
are configured with Xen 3.3.0 and use 32 bit Ubuntu 8.0.4
LTS running an SMP kernel (2.6.18.8) for the host operating
systems. The guest operating system is paravirtualized 32
bit Ubuntu 8.0.4 LTS with Linux kernel 2.6.18.8, the virtual
machine has 2GB of main memory and 10GB hard disk. The
servers are connected to a private 1GB Ethernet network.

5.1 CPU Dependent Application
The first experiment used a small C program that allo-

cates a large amount of memory (100MB) and repeatedly
iterated through the memory writing data. This is the worst
case test on standard live virtual machine migration. The
program dirties pages at such a rapid rate that iterative live
migration can never reduce the amount of dirty memory be-
low the level necessary to commit a migration. In Xen, a
live migration is limited to 30 iterations after which the mi-
gration is committed regardless of the number of dirty pages
remaining. If too many dirty pages remain, the final itera-
tion will not be transparent to the application. In extreme
cases, the final iteration could take long enough to disrupt
network connections.

The chart in Figure 3 shows the result of migrating Xen’s
worst case application. Xen very quickly stabilizes at just
under 5000 dirty pages per iteration. While dependency-
aware migration produces between 13 and 60 pages after
only two iterations. It is common to see the final itera-
tion occur once the number of dirty pages falls below 100,
although the actual number is dependent on network per-
formance. In this, case dependency-aware migration would
have committed on the third iteration and would have have
transmitted 93% and 99% fewer pages on the second and
third iterations respectively.

5.2 Network Dependent Application
For our second case we tested an application that down-

loads a 4 GB file over HTTP. This case has a persistent
external dependency and should not perform any better us-
ing dependancy-aware migration. Figure 4 shows that this
process dirties pages at a very rapid rate and nearly all pages
must be transfered during each iteration. The persistent de-
pendency does not allow any significant performance gain.

64

Figure 4: Number of memory pages transfered during iterative migration and the potential savings of

dependency-aware migration during an HTTP file transfer.

6. RELATED WORK
Dependency-aware virtual machine migration has its roots

in security and process tainting and coloring [6]. The basis of
our dependency-aware migration model is process coloring’s
diffusion model. A significant amount of work has been done
involving process tainting in the field of security. However,
to the best of our knowledge, this is among the first projects
outside the field of computer security that uses taint.

Both Xen and VMware have full featured, live migration
implementations, each of these employs a managed, heavy-
weight migration scheme. Additionally, process migration
aims to provide a lightweight migration scheme, but has its
pitfalls in managing external dependencies [8]. However,
this comes at the cost of handling special situations, for ex-
ample, open network connections, and files. Current process
migration techniques employ restrictions on which processes
can be migrated or utilize proxies that forward information
to the process’ destination.

7. FUTURE WORK
The primary focus of future work on this project will be

into formalizing and modeling more complex dependency re-
lationships between processes. This model will enable us to
prove the consistency of virtual machine processes and will
provide us with the confidence to continue this line of re-
search. Specifically, through modeling indirect dependencies
between processes and external objects we hope to further
decrease the overhead of virtual machine migration.

Additionally, we intend to complete the dependency-aware
migration functionality. We have made significant progress
in the implementation of the process tainting mechanism
into Xen’s process migration facility; however, the complete
selective migration facility remains to be completed.

8. CONCLUSION
We have presented a novel model for quick live migra-

tion of full virtual machines using dependency-aware selec-
tive migration of processes. As virtual machines increase in
popularity and more autonomic migration capabilities are
included into environments of virtual machines, the need
for more efficient live migration mechanisms will similarly
increase. The need for increased migration is even more ap-
parent when we consider that migration often occurs at the
worst time possible. Particularly, migrations tend to occur
during time of increased contention for resources or impend-
ing catastrophic events. We have shown that the potential
performance gains using dependency-aware migration can
be extreme and are particularly applicable to applications
that are not handled well by current migration mechanisms.

9. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
ACM SOSP, 2003.

[2] J. Chase, D. Irwin, L. Grit, J. Moore, and S. Sprenkle.
Dynamic Virtual Clusters in a Grid Site Manager. In
IEEE HPDC, 2003.

[3] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of Virtual Machines. In USENIX NSDI, 2005.

[4] R. Figueiredo, P. Dinda, and J. Fortes. A Case for
Grid Computing on Virtual Machines. In IEEE

ICDCS, 2003.

[5] Tal Garfinkel and Mendel Rosenblum. A virtual
machine introspection based architecture for intrusion
detection. In In Proc. Network and Distributed

Systems Security Symposium, pages 191–206, 2003.

65

[6] Xuxian Jiang, Florian Buchholz, AAron Walters,
Dongyan Xu, Yi-Min Wang, and Eugene H. Spafford.
Tracing worm break-in and contaminations via process
coloring: A provenance-preserving approach. IEEE

Transactions on Parallel and Distributed Systems,
19(7), July 2008.

[7] Katarzyna Keahey, Karl Doering, and Ian T. Foster.
From sandbox to playground: Dynamic virtual
environments in the grid. In GRID, pages 34–42, 2004.

[8] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of zap: A system for
migrating computing environments, 2002.

[9] Bryan D. Payne, Martim D. Carbone, and Wenke Lee.
Secure and flexible monitoring of virtual machines. In
Proceedings of the 2007 Annual Computer Security

Applications Conference, 2007.

[10] P. Ruth, X. Jiang, D. Xu, and S. Goasguen. Virtual
Distributed Environments in a Shared Infrastructure.
IEEE Computer, 38(5):63–69, May 2005.

[11] Paul Ruth, Junghwan Rhee, Dongyan Xu, Rick
Kennell, and Sebastien Goasguen. Autonomic live
adaptation of virtual computational environments in a
multi-domain infrastructure. In Proceedings of The 3rd

IEEE International Conference on Autonomic

Computing, June 2006.

[12] VMware. http://www.vmware.com.

[13] Chris Wright, Crispin Cowan, and James Morris.
Linux security modules: General security support for
the linux kernel. In In Proceedings of the 11th

USENIX Security Symposium, pages 17–31, 2002.

66

